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Z(3)  SYMMETRY

Aµ(!x, τ + β) = Aµ(!x, τ)

periodic boundary condition on gauge fields

(β = 1/T )

Gauge transformations: gAµ = g(Aµ + ∂µ)g†

g(!x, τ + β) = z g(!x, τ) z = exp

[

i
2π n

Nc

]

Polyakov loop:

(n = 1, 2, 3, ...)

Φ → zΦ = e
2πi n/3

Φ

Consider PURE GAUGE (“pure glue”) QCD

Thermodynamics:  

Φ(!x ) =
1

Nc

Tr

[

exp

(

i

∫ 1

T

0

dτ A4(!x , τ)

)]

Phases of QCD

R. Pisarski (2000)
Polyakov loop model

✦ A global symmetry emerges from a gauge theory

✦ The Polyakov loop is defined as

✦ The Polyakov loop is the order parameter related to the symmetry

color confinement

unbroken

color deconfinement

broken
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SPONTANEOUS  SYMMETRY  BREAKING 
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Spontaneously Broken  CHIRAL  SYMMETRY
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Figure 3: Phase relevant for the decay K → ππeν. The three bands correspond
to the three indicated values of the S–wave scattering length a0

0. The uncertainties
are dominated by those from the experimental input used in the Roy equations.
The triangles are the data points of Rosselet et al. [28], while the full circles
represent the preliminary E865 results [30].

narrow bands shown is obtained by fixing the value of a2
0 with the correlation

(13.2) and inserting the result in the numerical parametrization of the phase
shifts in appendix D of ref. [6]. At a given value of a0

0, the uncertainties in the
result for the phase difference δ0

0(s) − δ1
1(s) are dominated by the one in the

experimental input used for the I = 0 S–wave. Near threshold, the uncertainties
are proportional to (s− 4M2

π)3/2 – in the range shown, they amount to less than
a third of a degree. While the data of Rosselet et al. [28] are consistent with all
three of the indicated values of a0

0, the preliminary results of the E865 experiment
at Brookhaven [29, 30] are not. Instead they beautifully confirm the prediction
(11.2): The best fit to these data is obtained for a0

0 = 0.218, with χ2 = 5.7 for 5
degrees of freedom. As pointed out in ref. [46], the correlation (13.2) can be used
to convert data on the phase difference into data on the scattering lengths. For
a detailed discussion of the consequences for the value of a0

0, we refer to [46, 47].

14 Results for !1 and !2

The effective coupling constants of L4 enter the chiral perturbation theory repre-
sentation of the scattering amplitude and of the scalar form factor only as correc-
tions, so that our results for these are subject to significantly larger uncertainties

24
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Tests of  Chiral Symmetry Breaking Scenario:
Lattice QCD

perfect consistency with leading-order 
Gell-Mann - Oakes - Renner relation
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2
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confirmation of  “standard” (Nambu-Goldstone) 
spontaneous chiral symmetry breaking with 
Pions as Goldstone Bosons and large quark condensate:

|〈q̄q〉| # (0.23GeV)3 # 1.5 fm3

+
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−3

Interface χPT ↔ Lattice QCD

lattice: everything in units of the lattice spacing a, e.g. mass am
→ need to know a in physical units.
→ one option: find “Sommer scale” r0 (r1) on the lattice such that the

force F between heavy quarks fulfills F (r0)r02 = 1.65
→ from bottomonium phenomenology: r0 ≈ 0.5 fm (uncertainty? )

χPT: in terms of the

leading order pion mass:

mπ
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⇒ in good approximation mπ & mπ
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... very much like  Ginsburg - Landau  approach:

identify order parameters as collective degrees of freedom

which drive dynamics and thermodynamics

Introducing the  PNJL  MODEL2.
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Figure 3: Phase relevant for the decay K → ππeν. The three bands correspond
to the three indicated values of the S–wave scattering length a0

0. The uncertainties
are dominated by those from the experimental input used in the Roy equations.
The triangles are the data points of Rosselet et al. [28], while the full circles
represent the preliminary E865 results [30].

narrow bands shown is obtained by fixing the value of a2
0 with the correlation

(13.2) and inserting the result in the numerical parametrization of the phase
shifts in appendix D of ref. [6]. At a given value of a0

0, the uncertainties in the
result for the phase difference δ0

0(s) − δ1
1(s) are dominated by the one in the

experimental input used for the I = 0 S–wave. Near threshold, the uncertainties
are proportional to (s− 4M2

π)3/2 – in the range shown, they amount to less than
a third of a degree. While the data of Rosselet et al. [28] are consistent with all
three of the indicated values of a0

0, the preliminary results of the E865 experiment
at Brookhaven [29, 30] are not. Instead they beautifully confirm the prediction
(11.2): The best fit to these data is obtained for a0

0 = 0.218, with χ2 = 5.7 for 5
degrees of freedom. As pointed out in ref. [46], the correlation (13.2) can be used
to convert data on the phase difference into data on the scattering lengths. For
a detailed discussion of the consequences for the value of a0

0, we refer to [46, 47].

14 Results for !1 and !2

The effective coupling constants of L4 enter the chiral perturbation theory repre-
sentation of the scattering amplitude and of the scalar form factor only as correc-
tions, so that our results for these are subject to significantly larger uncertainties

24

π π

S wave scattering lengths Next-to-leading order (NLO) 
one-loop analysis  

Chiral Perturbation Theory  

Accurate measurement of a
I=0

0

a
I=0

0

test of  Gell-Mann - Oakes - Renner relation 

G. Colangelo, J. Gasser, H. Leutwyler   
Nucl. Phys. B 603 (2001) 125

K → ππeν

phase shifts  low-energy 
from  

ππ

Tests of  Chiral Symmetry Breaking Scenario:
Pion-Pion Scattering

BNL E865.

m
2
π
f
2
π

= −mq 〈ψ̄ψ〉 + O(m2

q
)



Tests of  Chiral Symmetry Breaking Scenario:
Lattice QCD

perfect consistency with leading-order 
Gell-Mann - Oakes - Renner relation

m
2

π = −
mu + md

f2

π

〈q̄q〉 + O(m2

q)

O(m2

q
log mq)

M. Lüscher
Proc. Lattice 2005

confirmation of  “standard” (Nambu-Goldstone) 
spontaneous chiral symmetry breaking with 
Pions as Goldstone Bosons and large quark condensate:

|〈q̄q〉| # (0.23GeV)3 # 1.5 fm3

+

fm
−3

Interface χPT ↔ Lattice QCD

lattice: everything in units of the lattice spacing a, e.g. mass am
→ need to know a in physical units.
→ one option: find “Sommer scale” r0 (r1) on the lattice such that the

force F between heavy quarks fulfills F (r0)r02 = 1.65
→ from bottomonium phenomenology: r0 ≈ 0.5 fm (uncertainty? )

χPT: in terms of the

leading order pion mass:

mπ
2 = B mu,d (Gell-Mann–Oakes–Renner)

→ lattice indicates: mπ
2 ∝ mu,d

over a wide range
⇒ in good approximation mπ & mπ

0 0.01 0.02 0.03 am
0

0.02

0.04

0.06

0.08

(am! )
2

m!"676MeV

484

381

294

select lattice data: try to keep
systematic errors from the lattice sufficiently small / accounted for
data points inside range of applicability of χPT (“convergence”!)

physical point

q

M. Lüscher
Proc. Lattice 2005



 POLYAKOV LOOP  dynamics 

   Confinement  

and 

NAMBU & JONA-LASINIO model 

  Chiral Symmetry 

Synthesis of 

... very much like  Ginsburg - Landau  approach:

identify order parameters as collective degrees of freedom

which drive dynamics and thermodynamics

Introducing the  PNJL  MODEL2.



   “Data” base:
QCD  Thermodynamics  on the Lattice

(e.g. :  F. Karsch,  J. Phys. G31 (2005) 633)

Equation of State 

0 0.5 1 1.5 2
T!Tc

0

0.2

0.4

0.6

0.8

n q
!T
3

Μ"0.2 Tc
Μ"0.4 Tc
Μ"0.6 Tc

njlpolyakov6.nb 1

nq

T3

lattice: G. Boyd et al. 

Nucl. Phys. B 469 (1996) 419   

lattice: C.R. Allton et al.

Phys. Rev. D 68 (2003) 014507   

Energy density
Entropy density

 Pressure

Quark number 
density 

C. Ratti, M. Thaler,  W. W. : Phys. Rev. D 73 (2006) 0506234  

of pure gauge 
(purely gluonic) 

QCD

Extrapolations 

of full-QCD
thermodynamics 

to
non-zero quark

chemical potentials

Tc ! 270MeV

2.1



 Sketch of the  PNJL  MODEL

S(ψ, ψ†, φ) =

∫ β=1/T

0

∫

V

d
3
x

[

ψ†∂τ ψ + H(ψ, ψ†, φ)
]

−
T

V
U(φ,T)

Action :

Fermionic Hamiltonian density  (NJL) :

H = −iψ†("α · "∇ + γ4 m0 − φ) ψ + V(ψ, ψ†)

Four-Fermion interaction

V = −Lint

quark quark 

glue 

Temporal background gauge field

Polyakov
 loop 

φ = φ3 λ3 + φ8 λ8

Φ =
1

Nc

Tr

[

exp

(

i

∫ 1/T

0

dτ A4
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1

3
Tr exp(iφ/T)

∈ SU(3)
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Basics of the NJL MODEL

Assume: short correlation range for “color transport” between quarks 

QUARK COLOR CURRENT: 

J
a

µ(x) = ψ̄(x)γµ
λa

2
ψ(x)

quark quark 

glue 
 <  0.2 fm 

Lint = −Gc J
a
µ(x)Jµ

a(x)

(chiral invariant) 

LOCAL SU(N  ) 
gauge symmetry of  

QCD 

c GLOBAL SU(N  ) 
symmetry of 
NJL model 

lc

Gc ∼ g2 l2
c

Y. Nambu, G. Jona-Lasinio:  Phys. Rev. 122 (1961) 345 ... applications to 
   HADRON PHYSICS:

 U. Vogl,  W. W. :  Prog. Part. Nucl. Phys. 27 (1991) 195
  T. Hatsuda, T. Kunihiro: Phys. Reports 247 (1994) 221

+ many others

c
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Fierz transform  of  Color - Current-Current Interaction (N  = 2 flavors): 

QUARK-ANTIQUARK channels 
vector + axial vector 
+ color octet terms 

DIQUARK channels Lqq = H (ψ̄iγ5τ2λ
ACψ̄T )(ψT Ciγ5τ2λ

Aψ) + ...

Lqq̄ =
G

2
[(ψ̄ψ)2 + (ψ̄iγ5#τψ)2] + ...

f

H

2

Self-consistent MEAN FIELD approximation:

GAP equation:

quark

〈ψ̄ψ〉 = −2iNfNc

∫
d4p

(2π)4
M θ(Λ2 − $p 2)

p2 − M2 + iε
M = mo − G〈ψ̄ψ〉

CHIRAL CONDENSATE:

GOLDSTONE  BOSONS  (pions)
...but: no confinement !
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4

3
H ! 10 GeV
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T K K T
= +

Bethe-Salpeter Equation in (colour singlet) QUARK-ANTIQUARK channels:

quark

antiquark

SU(3) NJL model including Axial U(1) breaking ‘t Hooft interaction (INSTANTONS)

m
2

π = −
mu + md

f2

π

〈q̄q〉 + O(m2

q)

Gell-Mann - Oakes -Renner
Relation satisfied:

f
2

π
= −4iNc

∫
d4p

(2π)4
M2 θ(Λ2

− #p 2)

(p2
− M2 + iε)2

S. Klimt,  M. Lutz,  U. Vogl,  W. W. :  
Nucl. Phys.  A 516 (1990) 429

PSEUDOSCALAR  MESON  SPECTRUM



Phases of QCD

R. Pisarski (2000)
Polyakov loop model

✦ A global symmetry emerges from a gauge theory

✦ The Polyakov loop is defined as

✦ The Polyakov loop is the order parameter related to the symmetry

color confinement

unbroken

color deconfinement

broken
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U(Φ)

T > Tc

Φ

Order parameter of spontaneously broken Z(N  ) center symmetry 
of SU(N  ) pure gauge theory (       DECONFINEMENT )  

c 
c 

(R. Pisarsky (2000);  K. Fukushima (2004))

Polyakov Loop  (Thermal Wilson Line)

Φ =
1

Nc

Tr

[

exp

(

i

∫ 1/T

0

dτ A4

)]

≡

1

3
Tr exp(iφ/T)

φ = φ3 λ3 + φ8 λ8

∈ SU(3)

{

Effective  potential :

Phases of QCD

R. Pisarski (2000)
Polyakov loop model

✦ A global symmetry emerges from a gauge theory

✦ The Polyakov loop is defined as

✦ The Polyakov loop is the order parameter related to the symmetry

color confinement

unbroken

color deconfinement

broken

Quark Gluon Plasma and Heavy Ion Collisions - Frascati, 09/06/2005 15

U(Φ)

T < Tc

confinement:
Z(3) symmetry

intact

deconfinement:
Z(3) symmetry
spontaneously

broken

U(Φ,T) = −
1

2
a(T)Φ∗

Φ − b(T) ln[1 − 6Φ
∗
Φ + 4(Φ∗3 + Φ

3) − 3(Φ∗
Φ)2]

〈Φ〉 = 0
〈Φ〉 #= 0

2.3



Illustration of the logarithmic loop potential

The integrated Haar measure
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Not all values |〈Φ〉| ≤ 1 are allowed by SU(3)C

The values near 〈Φ〉 = 1 are suppressed

Simon Rößner The phases of QCD Part II: PNJL model with diquarks

U(Φ)

  Polyakov Loop EFFECTIVE  POTENTIAL  
and  Z(3)  SYMMETRY

(n = 1, 2, 3, ...)Φ → zΦ = e
2πi n/3

Φ

U(Φ,T) = −
1

2
a(T)Φ∗

Φ − b(T) ln[1 − 6Φ
∗
Φ + 4(Φ∗3 + Φ

3) − 3(Φ∗
Φ)2]

S. Rößner
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Comparison with  “PURE GLUE”  Lattice Thermodynamics

Effective  potential 
energy density, entropy density, 

pressure

Tc(pure gauge) ≡ T0 " 270MeV

O. Kaczmarek et al.
Phys. Lett.  B 543 (2002) 41

first order phase transition

Minimization of U(Φ(T),T) = −p(T) fit  a(T), b(T)

S. Rößner,  C. Ratti,  W. W.  
 Phys. Rev.  D 75 (2007) 034007



Bosonisation:

Goldstone Bosons of spontaneously broken Chiral Symmetry
πa ↔ ψ̄ iγ5τa ψ

Scalar 
Field σ ↔ ψ̄ψ 〈σ〉 ↔ 〈ψ̄ψ〉Chiral 

Condensate

Diquark 
Field

Cooper Pair 
Condensate

Thermodynamics of the PNJL Model2.4

S(ψ, ψ†, φ) =

∫ β=1/T

0

∫

V

d
3
x

[

ψ†∂τ ψ + H(ψ, ψ†, φ)
]

−
T

V
U(φ,T)

Action :

dτ

∆ ↔ ψT
Γψ 〈∆〉 ↔ 〈ψT

Γψ〉

Thermodynamical Potential:

Ω = −
T

V
lnZ

S

(∂τ → ∂τ − µ)Z =

∫
Dϕ exp[−S(T,V, µ)]



Nambu-Gor’kov propagator including diquarks is:

S̃−1 (iωn, "p ) =

(

iγ0 ωn − "γ · "p − m + γ0 (µ − iφ) ∆γ5τ2λ2

−∆∗γ5τ2λ2 iγ0 ωn − "γ · "p − m − γ0 (µ − iφ)

)

,

(9)
Just as in the standard NJL model, quarks develop a dynamical (constituent) mass
through their interaction with the chiral condensate:

m = m0 − 〈σ〉 = m0 − G〈ψ̄ψ〉. (10)

With the input parameters previously specified one finds m = 325 MeV at T = 0.
Note that introducing diquarks (and anti-diquarks) as explicit degrees of freedom

implies off-diagonal pieces in the inverse propagator (9). As a consequence, the
traced Polyakov loop field Φ and its conjugate Φ∗ can no longer be factored out
when performing the Tr ln = ln det operation in the thermodynamic potential (8),
unlike the simpler case treated in our previous Ref. [11]. The explicit evaluation of
energy eigenvalues now involves φ3 and φ8 as independent fields. The final result
for Ω is then given as:

Ω = U (Φ, T ) +
σ2

2G
+

∆∗∆

2H

− 2Nf

∫

d3p

(2π)3

∑

j

{

T ln
[

1 + e−Ej/T
]

+
1

2
∆Ej

}

. (11)

The quasi-particle energies Ej, denoted by indices j running from 1 to 6, have the
following explicit expressions with ε("p ) =

√

"p 2 + m2:

E1,2 = ε("p ) ± µ̃b ,

E3,4 =
√

(ε("p ) + µ̃r)2 + |∆|2 ± i φ3 ,

E5,6 =
√

(ε("p ) − µ̃r)2 + |∆|2 ± i φ3 , (12)

with

µ̃b = µ + 2i
φ8√

3
, µ̃r = µ − i

φ8√
3

. (13)

In Eq.(11), ∆Ej = Ej − ε ± µ is the difference of the quasiparticle energy Ej and
the energy of free fermions (quarks), where the lower sign applies for fermions and
the upper sign for antifermions. It is understood that for three-momenta |"p | above
the cutoff Λ where NJL interactions are ”turned off”, the quantities σ and ∆, ∆∗

are set to zero.
In general, the Euclidean action SE is formally complex in the presence of the

temporal gauge field φ. It is real only at vanishing chemical potential, µ = 0. In this

5

Thermodynamics of the PNJL Model

Thermodynamical Potential after Matsubara sums:

Quasiparticle “branches”:

m = m0 − σ = m0 − G〈ψ̄ψ〉ε("p ) =
√

"p 2 + m2

Minimize  Thermodynamical Potential Mean Field Equations:

∂ReΩ

∂ϕ
= 0

(ϕ = σ,∆, φ3, φ8)

chiral condensate diquark
Polyakov loop 

generators 

Ω = U(Φ, T ) +
σ2

2G
+

∆∗∆

2H
− 2Nf

∫

d3p

(2π)3

∑

j

T ln
[

1 + e−Ej/T
]

+ const
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CHIRAL  and 
DECONFINEMENT

 transitions 
almost coincide !

Lattice results: 
G. Boyd et al., Phys. Lett. B 349 (1995) 170

PNJL:

3. Results        DECONFINEMENT   and 
CHIRAL  SYMMETRY  RESTORATION
PART 1:
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S. Rößner,  C. Ratti,  W. W. :  
Phys. Rev.  D 75 (2007) 034007

(µ = 0)



POLYAKOV LOOP

PNJL prediction in comparison with 
2-flavour Lattice QCD Thermodynamics

at zero chemical potential

Lattice data: 
   

   O. Kaczmarek,  F. Zantow: 
 Phys. Rev.  D 71 (2005) 054508

first order deconfinement transition (pure gauge)  
     cross-over (with quarks)

S. Rößner,  C. Ratti,  W. W.  
Phys. Rev.  D 75 (2007) 034007



PNJL :
Comparisons with N  = 2 Lattice Thermodynamicsf

0 1 2 3
T/T

c

0

2

4

6

8 N
t
 = 6(ε-3p)/T

4

p = −Ω(T, µ = 0) ε = T
∂p(T, µ = 0)

∂T
− p(T, µ = 0)

PRESSURE and ENERGY DENSITY at zero chemical potential

interaction
measure
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pressure

(confinement)
(no conf.)

C. Ratti,  M. Thaler,  W. W.:  Phys. Rev.  D 73 (2006) 014019

Lattice data:     F. Karsch,  F. Laermann,  A. Peikert;   Nucl. Phys. B 605 (2002) 579



∆p(T, µ) = p(T, µ) − p(T, µ = 0)

Pressure difference:

Lattice data:     Allton et al.  Phys. Rev. D 68 (2003) 
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C. Ratti,  M. Thaler,  W. W.:  Phys. Rev.  D 73 (2006) 014019

(contd.)Non-zero QUARK CHEMICAL POTENTIAL
Results PART I1:



Quark number density:

nq(T, µ) = −

∂Ω(T, µ)

∂µ

Lattice data:     Allton et al.  Phys. Rev.  D 68 (2003) 
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Non-zero QUARK CHEMICAL POTENTIAL
(contd.)
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Figure 9: Comparison between the results in the PNJL model (solid line) and in the standard
NJL model (dashed line) for the quark number density at µ = 102 MeV. The effect of the lack of
confinement is evident in the standard NJL model.

It is instructive to study the effect of the Polyakov loop dynamics on the be-
haviour of the quark density nq. The coupling of the quark quasiparticles to the
field Φ reduces their weight as thermodynamically active degrees of freedom when
the critical temperature Tc is approached from above. At Tc the expectation value
of Φ tends to zero and the quasiparticle exponentials exp[−(Ep ± µ̃)/T ] are progres-
sively suppressed in the thermodynamic potential as T → Tc. This is what can be
interpreted as the impact of confinement in the context of the PNJL model. In con-
trast, the standard NJL model without coupling to the Polyakov loop does not have
this important feature, so that the quark density leaks strongly into the ”forbidden”
domain T < Tc # 170 MeV, as demonstrated in Fig. 9.

6 Summary and conclusions

We have studied a Polyakov-loop-extended Nambu and Jona-Lasinio (PNJL) model
with the aim of exploring whether such an approach can catch essential features
of QCD thermodynamics when confronted with results of lattice computations at
finite temperature and quark chemical potential. This PNJL model represents a
minimal synthesis of the two basic principles that govern QCD at low temperatures:
spontaneous chiral symmetry breaking and confinement. The respective order pa-
rameters (the chiral quark condensate and the Polyakov loop) are given the meaning
of collective degrees of freedom. Quarks couple to these collective fields according
to the symmetry rules dictated by QCD itself.

Once a limited set of input parameters is fitted to Lattice QCD in the pure gauge

15

Role of CONFINEMENT (POLYAKOV loop dynamics)

PNJL (incl. confinement)

NJL classic
(no confinement)

quark number density

Non-zero QUARK CHEMICAL POTENTIAL
(contd.)

C. Ratti,  M. Thaler,  W.W.  
PRD 73 (2006)



c4
c6

Non-zero QUARK CHEMICAL POTENTIAL
(contd.)

Taylor expansion of pressure: p(T, µ) = T4
∑

n

cn(T)
(

µ

T

)n

Lattice:
C.R. Allton et al.

Phys. Rev.  D 71 (2005) 054508
S. Rößner,  C. Ratti,  W. W.  

 Phys. Rev.  D 75 (2007) 034007

c2



PHASE  DIAGRAM4.
Issues:  Critical point  Diquark (superconducting) phase

... for comparison:  
critical temperature 
from  Lattice QCD 

M. Cheng et al.,  
Phys. Rev.  D74 (2006) 054507

Tc = 192 ± 11 MeV

( 2+1 flavors )

Tc ! 202MeV

( 2 flavors )

O. Kaczmarek,  F. Zantow: 
 Phys. Rev.  D 71 (2005) 054508

S. Rößner,  C. Ratti,  W. W.:  Phys. Rev.  D 75 (2007) 034007

Figure 2: Comparison of phase diagram obtained in mean field approximation [23] (left
panel) and the phase diagram (in the thermodynamic limit) implementing corrections to
the order β ≤ 1 (right panel). Solid lines: cross-over transition of the real part of the
Polyakov loop, dashed lines: first order phase transition and dotted: second order phase
transitions.

Where the first term is just the susceptibility of the Gaussian theory.
In Fig. 2 we compare the phase diagram including corrections to the mean field result

with the mean field result shown in Ref. [23], where it is stated that the corrections due to
fluctuations in the case of the phase diagram are quantitatively small, which is explicitly
approved by Fig. 2. The cross-over transition fixed to the point where ∂(Φ + Φ∗)/∂T is
maximal.

There are several ways to determine the cross-over transition line separating the phase
of broken chiral symmetry from the quark gluon plasma phase. In Fig. 3 two such criteria
are compared. Firstly the maximum in the chiral or Polyakov loop susceptibility χRe Φ

(solid) indicate the cross-over transition, secondly the maximal change (dashed) of the
constituent quark mass and the Polyakov loop signalize the rapid cross-over transition. As
both criteria are linked via the quadratic term in the action, all curves finally converge to
the same point, the critical point in the absence of diquark condensation. A singularity in
the second derivative of the action (or equivalently in the propagator) enforces this unique
intersection point, where the specific heat and other quantities show singular behaviour.

In Fig. 4 we show the chiral and the Polyakov loop susceptibility as a function of
temperature at vanishing quark chemical potential (left panel) and compare them to the
temperature derivatives of the constituent quark mass and the Polyakov loop (right panel).
Why is the behaviour for χM and χRe Φ and χΦ at T → 0 different? The width of
the peak in the temperature derivative of the constituent quark mass m = m0−σ suggests
that this cross-over is influenced by the cross-over of the Polyakov loop. At finite current
quark mass m0 the PNJL model produces an approximate coincidence of the peaks in the
susceptibilities of the Polyakov loop and the constituent quark mass m.

4.3 Moments of the pressure difference

One benchmark for the PNJL-model is the agreement with QCD lattice calculations. One
way to treat the fermion sign problem in lattice QCD is to expand the calculated pressure
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hadronic phase

quark − gluon phase

diquark phase

〈q̄q〉 #= 0

〈qq〉 #= 0
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PHASE  DIAGRAM
(contd.)

Location of critical point depends sensitively on 
active degrees of freedom involved
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PHASE  DIAGRAM
(contd.)
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 Peter Braun-Munzinger

The QCD phase diagram and chemical freeze-out (I)

can this be used to determine
the critical temperature of the

QCD phase transition?

Main result: chemical 
freeze-out points seem to
delineate the QCD phase 
boundary  at small µ
(< 400 MeV)
 

 Peter Braun-Munzinger

The QCD phase boundary – recent results 
from lattice QCD

Z. Fodor, S. Katz, JHEP0404,
(2004) 050;S. Ejiri et al, hep-lat/0312006

New 
endpoint

!!

Note: 3 µq = µB Tri-critical point not (yet) well
determined theoretically

PHASE  DIAGRAM
(contd.)

T (MeV)

Status:   Lattice QCD  and  chemical freezeout phenomenology

Z. Fodor, S. Katz:    JHEP 0404 (2004) 050

P. Braun-Munzinger et al.  (2006)



QUASIPARTICLE  approach (PNJL model) encoding  
CHIRAL SYMMETRY and  CONFINEMENT  in terms of 

coupled “order parameter” fields  
(CHIRAL CONDENSATE,  POLYAKOV LOOP)

 surprisingly successful in comparison with
QCD  THERMODYNAMICS on the Lattice

PNJL  for 2 + 1 flavors  (including DIQUARKS) 

Establish contacts with high temperature limit
(Transverse Gluons, ”Hard Thermal Loops”, Running Coupling) 

(T ≤ 2Tc)

  Summary (part I) 5.

Extensions beyond MEAN FIELD    (     Simon Rößner)

further developments: 

∼



Quark Self-Energy at Finite Temperatures II

Quark Self-Energy Diagram at Finite Temperatures

a

µ

b

ν

δ

p p − k

k

p
α β = Σ(T , p)

Matsubara Sums can be carried out analytically

Σ̃(T ,ω,'p) = 2g2CFδαβT
∑

n∈Z

∫

d
3'k

(2π)3
i(ω − ωn)γ0 + (pi − ki )γi

[

(ω − ωn)2 + |'p − 'k |2
] [

ω2n + |'k |2
]

= g2CFδαβ

∫

d
3'k

(2π)3

(

iωγ0 + (pi − ki )γi
)

1

E1E2
·










E1 + E2
(E1 + E2)2 + ω2

(1 + n1 − ñ2) −
E1 − E2

(E1 − E2)2 + ω2
(n1 + ñ2 )










+ g2CFδαβ

∫

d
3k

(2π)3
(−iγ0 )

ω
E2
·










1

(E1 + E2)2 + ω2
(1 + n1 − ñ2) −

1

(E1 − E2)2 + ω2
(n1 + ñ2)










E1 = |
'k |, E2 = |'p −

'k |, n1 =
1

e
E1/T −1

, n2 =
1

e
E2/T +1

T. Hell, S.Rößner, C. Ratti, W. Weise Thermodynamics of an NJL-Model with Running Coupling

heat bath

Running Nambu-Coupling II

Solution

1 Define an “effective” α∗
QCD

via the LO expression for the QCD

running coupling

α∗
QCD

(Q2) =
4π

1
3

(33 − 2nf) ln
(

Q2

Λ2

)

2 Set nf = 3 and fix Λ at the Z -boson mass:
αQCD(mZ = 91.1876GeV) = 0.1176 ⇒ Λ ≈ 250MeV
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 Outlook : PNJL with Running Coupling 6.

Running Nambu-Coupling III

3 Definition of the Running
Nambu-Coupling

G(Q2) =













2π
3

α(Q2)

Q2
for Q2 ≥ Γ2

g(Q2) for Q2 < Γ2

smooth function g continues G
in the IR

Running Nambu-Coupling
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4 Introduction of a three momentum cutoff Ω" Γ in order to
regularize integrals

Model

Advanced Nambu Jona-Lasinio Model = ANJL

T. Hell, S.Rößner, C. Ratti, W. Weise Thermodynamics of an NJL-Model with Running Coupling
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e
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2
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NJL

with
Thomas Hell       Simon Rößner

contacts with PQCD:

replace NJL cutoff by 
sliding Q-scale

see also: 
Dyson-Schwinger approach

G(Q2) =
2π

3

αs(Q2)

Q2

at large Q:

M(Q2) = −G(Q2)〈ψ̄ψ〉

〈ψ̄ψ〉 = −
NcNf

4π4

∫
dQ4

∫
d3Q

M(Q2)

Q2 + M(Q2)

Q

quark 
condensate

Q



Constituent Quark Mass: Comparison to the Lattice

ANJL Constituent Quark Mass compared to Lattice Data
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perfect description of  pion properties  and  current algebra
in progress:   

implementation of Polyakov loop and 
thermodynamics incl. thermal self-energies

NJL with running coupling: 
dynamical (constituent) quark mass 

M(Q2) = −G(Q2)〈ψ̄ψ〉

Quark Self-Energy at Finite Temperatures II

Quark Self-Energy Diagram at Finite Temperatures
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µ
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ν

δ

p p − k
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p
α β = Σ(T , p)

Matsubara Sums can be carried out analytically

Σ̃(T ,ω,'p) = 2g2CFδαβT
∑

n∈Z

∫

d
3'k

(2π)3
i(ω − ωn)γ0 + (pi − ki )γi

[

(ω − ωn)2 + |'p − 'k |2
] [

ω2n + |'k |2
]

= g2CFδαβ

∫

d
3'k

(2π)3

(

iωγ0 + (pi − ki )γi
)

1

E1E2
·










E1 + E2
(E1 + E2)2 + ω2

(1 + n1 − ñ2) −
E1 − E2

(E1 − E2)2 + ω2
(n1 + ñ2 )










+ g2CFδαβ

∫

d
3k

(2π)3
(−iγ0 )

ω
E2
·










1

(E1 + E2)2 + ω2
(1 + n1 − ñ2) −

1

(E1 − E2)2 + ω2
(n1 + ñ2)










E1 = |
'k |, E2 = |'p −

'k |, n1 =
1

e
E1/T −1

, n2 =
1

e
E2/T +1
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